4

Second Law of Thermodynamics

4.1 LIMITATIONS OF THE FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics deals with energy changes involved in a process. But, it alone
cannot answer many questions related to transformation of energy. The first law specifies only this: if
energy is produced during a process, it must be compensated with a loss of an exactly equal quantity,
so that the total energy before and after the process are the same. It helps us to determine the energy
changes involved in a process, but it cannot tell us whether a proposed change would actually occur
or not. If it occurs, what is the direction of the change and what are the conditions of equilibrium
under which the system undergoes no further change?

The major limitation of the first law of thermodynamics 1s, therefore, its inability to deal with the
direction of the process and the extent of change. Also, according to the first law, all forms of energy
are quantitatively equivalent and they are just additive terms in an energy balance. It fails to recognise
the qualitative differences between various forms of energy. This difference is apparent when we
attempt to convert heat into work by means of a heat engine. Before we embark on the detailed study
of the second law of thermodynamics, a discussion on these limitations is quite in order.

4.1.1 Direction of Change

We have seen that the first law of thermodynamics deals with the amount of energy in different forms
that are involved in various spontaneous processes, but it is not concerned with the ‘direction of
change’. For example, when water on the top of a mountain runs to the bottom as a stream or as a
waterfall, the initial potential energy of water is converted to the kinetic energy and the first law of
thermodynamics is satisfied, because, the total energy remains unchanged. It would equally be
satisfied in the reverse process in which the water flows upwards spontaneously. The first law
doesn’t suggest the impossibility of water flowing upwards spontancously. However, such an
occurrence is contrary to our experience.

Now, let us consider another example. When two bodies at different temperatures are brought into
contact, heat energy flows from the body at high temperature to that at low temperature spontaneously,
Heat energy will never flow from a lower temperature level to a higher temperature level without
applying external work. According to the first law, the energy gained by the cold body should be
equal to the energy lost by the hot body. Again, there is nothing in the first law that predicts that the
transfer of heat must always be from the hot to the cold body. The first law would be satisfied equally
well if the transfer of energy took place in the reverse direction, but such a transfer never happens in
nature. Similarly, we never observe a mixture of gases made up of two or more components
spontaneously separating into its constituents. Though such a process is against our experience, it
would not be inconsistent with the first law of thermodynamics as long as no net change in the total
energy is involved. Thus, it is clear that apart from the first law, but complementary to it, there should
be some principle to deal with the spontaneous processes and their direction.

The inadequacy of the first law of thermodynamics to explain our general experience with
spontaneous processes or tendency to change led to the development of the second law of
thermodynamics, which deals with the direction of change. With the help of the tools provided by the
second law, we can find answers to many problems that are not answered by the first law. For a
chemical reaction occurring from a given initial state of reactants to a given final state of products,
the first law can be utilised to estimate the heat of reaction and the effect of temperature and pressure
on it. But, will the reaction proceed spontaneously? What is the equilibrium point at which no further
change occurs? How is the equilibrium affected by the operating conditions? What is the maximumn
work available from a process? What is the minimum work required to carry out a process? What is
the maximum efficiency with which a process could be carried out? Such questions are answered by
the second law of thermodynamics, usually in combination with the first law.

4.1.2 Qualitative Difference between Heat and Work

Another limitation of the first law of thermodynamics is that it does not take into account the
difference in quality between heat and work. When we treat heat and work as additive terms in an
energy balance, we are in fact ignoring the intrinsic difference between them. It is true that, in the
application of the first law this difference is not going to affect our calculations. However when we
consider converting heat energy to other forms of energy, the qualitative difference between heat and
work would be obvious. It is possible to convert one form of work to another (such as electrical to
mechanical) with almost 100 per cent efficiency, provided, the irreversibilities in the apparatus are
eliminated. But the efficiency of converting energy transferred to a system as heat into any of the
forms of work is limited to very low values. This leads us to the conclusion that heat is a less
versatile or more degraded form of energy compared to the other forms of energy or work can be
termed energy of a higher quality than heat. During the conversion of heat into work, a portion of the
energy becomes unavailable, that i1s, not capable of being transformed into useful form.

The difference between the quality of heat and other forms of energy are accounted for in the second
law of thermodynamics. When we say that heat flows always from a higher to a lower temperature we
are assigning a characteristic quality as well as quantity to heat, the quality being represented by
temperature. We know that the efficiency of a thermal power plant increases as the temperature of the
steam in the boiler increases. In the transformation of heat to work, the increase in the efficiency that
results from the increase in the temperature of the source clearly establishes the connection between
the temperature and the quality of heat.
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42 GENERAL STATEMENTS OF THE SECOND LAW (
THERMODYNAMICS

The second law of thermodynamics is just the generalisation of our experiences with spontaneous
processes and can be stated in a number of ways:
1. Heat cannot by itself pass froma cold to a hot body.
2. All spontaneous processes are, to some extent, irreversible and are accompanied by a
degradation of energy.
3. Every system, when left to itself, will on the average, change toward a system of maximum
probability.

4. Kelvin—Planck statement. 1t is impossible to construct an engine that, operating continuously (in
a cycle), will produce no effect other than the transfer of heat from a single thermal reservoir at
a uniform temperature and the performance of an equal amount of work. This statement implies
that at least two thermal reservoirs of different temperatures are necessary for a heat engine to
operate. This is because only part of the heat transferred to the engine from a high temperature
reservoir is converted to work; the rest is rejected to a low temperature reservoir. Further, the
statement implies that no heat engine can have 100% efficiency because heat cannot be
completely converted to work. The word ‘continuous’ in the Kelvin-Planck statement has an
important implication. Consider the isothermal expansion of an ideal gas. The change in internal
energy, DU, is zero in this process. This means that the heat absorbed by the gas is completely
converted to work. Though it may appear to contradict the second law, in fact, it is not so. What
the second law requires 1s that there should be no change in the system or in the surroundings
other than the complete conversion of heat into work. Here, the pressure of the gas has
decreased and the process cannot be carried out continuously. The pressure of the gas would
soon become equal to that of the surroundings, and further expansion would be impossible. The
continuous conversion of heat to work is possible only in a cyclic process. But, in the cyclic
process, energy from the surroundings is utilised in the form of work, in order to compress the
gas back to its original pressure.

5. Clausius statement. It is impossible to construct a heat pump that, operating continuously, will
produce no effect other than the transfer of heat from a lower temperature body to a higher
temperature one. In other words, any process, which consists solely in the transfer of heat from
one temperature to a higher one, is impossible. It means that energy in the form of work must be
supplied to the heat pump in order to transfer heat from a cold body to a hot body. Therefore, the
coefficient of performance of a heat pump can never be infinity.

4.2.1 The Equivalence of the Kelvin and Clausius Statements

All the statements of the second law are equivalent and mean the same thing. Any device that violates
any one of these statements will violate all other statements. Figure 4.1 shows an engine, which
violates Kelvin-Planck statement by absorbing heat from a single thermal reservoir and producing an
equivalent amount of work. The work output of this engine (W= Q)) is used to drive a heat pump
which transfers an amount of heat 0> froma low temperature reservoir and an amount (J] + 07) to a
high temperature reservoir. The combined system shown by the dotted lines in the figure then act as
heat pump which transfers an amount of heat 07 from a lower temperature to a higher temperature
reservoir without using any external work. This is a violation of Clausius statement.

Now consider a heat pump, which violates the Clausius statement, by absorbing heat @7 from a low
temperature reservoir and transferring it to a high temperature reservoir (Fig. 4.2). Let a heat engine
work between these two reservoirs by absorbing heat O (O] > 02) delivering work W (W= Q) -
07) and rejecting heat 02 to the low temperature reservoir. Since this process does not affect the
low-temperature reservoir, the net effect is a heat engine operating with a single thermal reservoir
absorbing heat O] — 07 and converting it completely to work. This is a violation of the Kelvin-
Planck statement.

High-temperature reservoir

0
e = el / Combined system

Low-temperature reservoir

Fig. 4.1 A heat engine that violates the Kelvin—Planck, statement.
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High-temperature reservoir

O
- / Combined system

Low-temperature reservoir

Fig. 4.2 A heat pump that violates the Clausius statement.

4.3 ENTROPY
4.3.1 Why the Concept of Entropy?

The second law of thermodynamics states that all spontaneous processes are, to some extent,
irreversible and are accompanied by a degradation of energy. It also means that it is impossible for
any self-acting machine to transfer energy from a given state to a higher state of availability. To make
these statements quantitative there is required some function that always changes in a certain way
during a spontaneous process and therefore, will characterise such a change. Internal energy was

defined to give quantitative significance to the first law. Internal energy does not change in any
characteristic way in a spontaneous process, and it does not help 1n any way in the development of the
second law. The function that is fundamental in the development of the second law is entropy, which
means transformability (change) in Greek, introduced by Clausius in 1851. Later in this chapter, we
will show that the second law of thermodynamics necessitates that all spontaneous processes result in
an increase in the entropy and no process is possible that results in a decrease in entropy.

Consider an imaginary process for gas separation as illustrated in Fig. 4.3. Assuming that the gases
behave ideally, the change in the internal energy, DU= 0. On the basis of the first law, the process is
not an impossible one. With the aid of the entropy function it can readily be shown that the imagined
process 1s impossible, because, 1t would involve a net decrease in entropy of the system with no
corresponding increase in the entropy of the surroundings.

Oxygen at 1 bar and 300 K

Air at 1.5 bar and 300 K

Air separator

Nitrogen at 1 bar and 300 K

Fig. 4.3 A process that is permitted by the first law, but that violates the second law.

We have seen that although there is an exact quantitative equivalence among the different forms of
energy, there is a marked difference in the availability of these forms for useful work. Heat represents
the least ‘available’ form of energy and transformation of other forms into heat represents a
degradation of energy. Entropy is the thermodynamic property, which serves as a measure of the
unavailability or degradation of energy. An increase in unavailability of the total energy of a system is
quantitatively expressed by a corresponding increase in its entropy. Entropy, being an intrinsic
property of matter, is not affected by the external position of the body or its motion relative to other
bodies. The entropy of unit mass of water at the top of the mountain is equal to the entropy of the same
amount of water at the bottom of the falls, 1f the temperature and pressure are the same. Similarly, the
entropy of unit mass of water in the flowing stream will be equal to the entropy of water in a stagnant
pool, provided that the conditions such as the temperature and pressure are the same in both the cases.
The entropy of a system is affected only by the nature of matter under consideration and by the state in
which it exists.
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degradation of energy is measured by a net increase in the entropy. In this case, the increase in
entropy was due to the degeneration of mechanical energy into heat. In general, an increase in entropy
results from the addition of heat into the system through the degradation of energy in any form or, by
the direct supply of heat to the system. In short, the entropy of the system is increased by the
addition of heat through any mechanism or from any source. The increase in entropy is
proportional to the heat exchanged but not equal to it, since, it is necessary to consider the
temperature of the system when the heat is transferred.

4.3.3 Entropy and Temperature

The amount of heat added to a system is only a partial measure of the magnitude of its entropy
increase. It also depends upon the temperature of the system to which heat is added. Consider a
system consisting of a weight and two separate reservoirs, one at temperature 7}, and the other at a
lower temperature 7. The weight is first allowed to fall to the high-temperature reservoir,

transferring to it certain quantity of heat in the process. The heat so transferred is then made to flow
into the reservoir at 7. These two irreversible processes result in a net increase in entropy which

would be the same as the increase in entropy that would result if the weight were allowed to fall
directly to the reservoir at 7. This is so, because, the initial and the final conditions are the same in
both cases. Entropy, as will be shown later, is a thermodynamic property that depends only on the
terminal states and not on the path followed. Therefore, the change in entropy would be the same in
both cases. In the first instance, it is the sum of two contributions: one, the entropy change that
resulted by the dropping of the weight to the hot reservoir; and the other by the transfer of heat to the
cold reservoir. Since, these two together equal the entropy change resulted by the dropping of the
weight to the cold reservoir, we can conclude that the change in entropy due to the lowering of weight
to a reservoir at a high temperature is less than that resulted when the weight was lowered to the
reservoir at a low temperature. It means that the transfer of energy to a low temperature leads to a
greater degradation than that resulted by the transfer of the same quantity to a higher temperature. The
greater the degradation of the energy, the greater would be the irreversibility of the process. Entropy,
being a thermodynamic function, used to measure the degree of degradation or the extent of
irreversibility, should therefore, be related not to O, but to O/7, where Q is the heat received by the
reservoir and 7'is its temperature.

In conclusion, the transfer of heat within an isolated system to a region of lower temperature
increases the unavailability of energy and the entropy of the system. The addition of heat to a
system at a lower temperature leads to a greater degradation of energy than that resulted by the
addition at a higher temperature.

4.3.4 Entropy and the Nature of the Process

We have seen that a quantitative description for entropy should take into account the heat transferred
and the temperature level at which it is transferred. In addition, in order to complete the definition of
entropy, the nature of the process should also be specified. For example, a gas may be expanded
freely to a lower pressure within a closed system, which is completely isolated from the surroundings
thermally and mechanically. This is an irreversible process resulting in degradation of energy of the
system and consequently an increase in its entropy. However, no heat is added, no work is done, and

for an ideal gas, the process is isothermal. How is then the increase in entropy for this process
measured? Consider an engine operating within the system that continuously converts the work done
into heat by means of friction. In this case, heat is added to the system by degradation of mechanical
work. The amount of heat added increases with the efficiency of the engine, and reaches a maximum
when the engine operates reversibly. But the change in entropy (being a state function) accompanying
a process, is dependent only on the initial and final states and not on the path. So, when we take the
amount of heat transferred to measure the increase in entropy through the term O/7, the nature of the
process should be specified. The logical choice, thus, is the maximum possible degradation of higher
forms of energy into heat, which is possible only in a reversible process. Entropy change should
therefore be measured as Qp/T, where Op is the heat transferred when the process is occurring
reversibly.
To summarise, the quantitative definition of entropy requires the following specifications:

1. The amount of heat transferred.

2. The temperature level at which the transfer occurs
3. The nature of the process, whether reversible or irreversible.

To comply with these requirements, we define entropy change in a process as

as = %% @.1)
T

In Eq. (4.1), § denotes the entropy, O the heat transferred, 7" the absolute temperature, and the suffix R
indicates the reversibility of the process.

4.4 THE CARNOT PRINCIPLE

Nicolas Sadi Carnot (1824) introduced the concept of cyclic operations and was among the first tc
study the principles of the second law of thermodynamics. He devised a classical ideal cycle named
after him that formed the basis for the mathematical statement of second law of thermodynamics.

The Carnot cycle consists of an alternate series of two reversible isothermal processes and two
reversible adiabatic processes as shown in Fig. 4.4,
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2 B
o | AB = Reversible isothermal heat absorption
o | D BC = Reversible adiabatic expansion
c CD = Reversible isothermal heal rejection
DA = Reversible adiabatic compression
Volume

Fig. 44 P-V diagram for the Carnot cycle.

During the process AB, heat is transferred reversibly and isothermally to the working substance from
the high-temperature reservoir (HTR) at temperature 7| and the system performs an amount of work
which is given by the area under the curve A8 on the PJ” diagram. During the reversible adiabatic
expansion (BC), the temperature of the system decreases from 7 to . The area under the curve BC

gives the net work obtained from this step. During process CD, the system rejects heat 07 to a low-
temperature reservoir (LTR) at a constant temperature 7. The area on the PV diagram under the

curve CD is the net work done on the system during this step. The final step is a reversible adiabatic
compression (DA4) during which the temperature rises from 75 to 7’| and the original conditions are

restored to the system. The area under the curve DA is the work done on the system for this change.
The enclosed area ABCD represents the net work delivered by the engine,
The Carnot principle involves the following two propositions.

1. No heat engine operating in a cycle between two constant temperature reservoirs can be more
efficient than a reversible engine working between the same two reservoirs.

2. All reversible engines working between two constant temperature reservoirs have the same
efficiency irrespective of the working substance, and this efficiency is dependent only on the
temperature levels.

The first proposition can be easily verified by considering a reversible engine (R) and an irreversible
engine (/) operating between two heat reservoirs as shown in Fig. 4.5. Assume that the irreversible
engine is more efficient than the reversible one. Let the work output of both the engines be IW. Since,
the efficiency is defined as the ratio of the work output to the heat input, then for engine /, both the
heat absorbed Q1 ; and the heat rejected Q7 y are less than the corresponding values Q1 g and 02

for the reversible engine.

High-temperature reservoir

Reversible

: Irreversible
engine

engine

Low-temperature reservoir

Fig. 4.5 The proof of Carnot's principle.
Since the reversible engine can be operated as a heat pump as shown by the dotted arrows in Fig. 4.5,
the work output from engine (/) can be utilised to pump heat Oy p from the LTR, thereby, rejecting
heat Q1 p to the HTR. The net effect of the combined system would be the transfer of heat (O -
(2,7) from a cold body to the hot one without the aid of an external agency. As this is a violation of
the second law of thermodynamics, an irreversible engine cannot be more efficient than a reversible

one.

To prove the second proposition, assume that the irreversible engine (/) in Fig. 4.5 be replaced by a
reversible engine (R[). Let this engine be more efficient than the engine R. By reasoning on the same
lines as in the preceding paragraph, we can show that the engine R can be reversed to run as a heat
pump, producing a net effect of transfer of energy from a lower to a higher temperature without any
work. Since this is contrary to the second law, R[J cannot be more efficient than R and vice versa.
This means that neither R nor RO can be more efficient than each other, i.e., both must have same
efficiency. Since, no restrictions were placed on the working fluid in the engine, this efficiency is
independent of the working substance and depends only on the temperature levels between which the
system is operating.

Denoting the efficiency of the Carnot engine by h,

h=ATy, 1)
Since the efficiency is defined as the ratio of W to Oy, and W by the first law of thermodynamics is
equal to Q| = Oy, we can write the above equation as
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Denoting the el‘ﬁcincy of the Carnot engine by h,

h=ATy, T2)
Since the efficiency is defined as the ratio of W to Oy, and W by the first law of thermodynamics is
equal to Q1 — @5, we can write the above equation as

2-9% _q, T,) (4.2)

1
or

O,
2 0. T) (4.3)
Q l

Equation (4.3) means that the ratio of heat rejected to the heat absorbed by a reversible engine is a
function only of the temperatures of the heat source and sink.

4.4.1 Thermodynamic Temperature Scale

The fact that the efficiency of a Carnot engine is independent of the working fluid enables us to define
a umversal scale of temperature independent of the individual properties of the thermometric
substance and of the arbitrary nature of the method of measurement. Lord Kelvin proposed an

absolute thermodynamic scale of temperature such that the functional relationship in Eq. (4.3) could
be written as

& (4.4)
Equation (4.4) means that if an ideal Carnot engine be constructed and Q] and 09 are measured, their
ratio would be the ratio of the absolute thermodynamic temperature of the heat source to that of the
sink. The choice of the function {7, T7) as T|/T7 is arbitrary. We could have chosen this function as
equal to 75/Ty, or exp (7| — T7) instead of T|/T>. But the present choice is found to be convenient,

because by this choice, the absolute temperature coincides with the temperature in the ideal gas
equation. The unit of absolute temperature is defined by choosing a single fixed point, the triple point
of water as 7; =273.16 K. If a heat engine has a heat source at this temperature, the temperature of the

cold sink—the object, whose temperature we want to measure—can be found by measuring O and

(> and using

r < 7

!

-~ [~
~

[§

With the above choice of the thermodynamic temperature, the efficiency (h) of an ideal Carnot engine,
Eq. (4.2), becomes

-0, T,-T,
U=Q1{?Q-= 1T 2 4.5
1 1
and Eq. (4.3) becomes
2.5
g 1

The absolute zero or the zero of the thermodynamic temperature scale is the value of 7% at which the
Carnot efficiency becomes equal to unity. Equation (4.5) gives the maximum efficiency of a heat
engine operating between two thermal reservoirs at thermodynamic temperatures 7] and 75. In the
following section, we consider the efficiency of an ideal Carnot engine using an ideal gas as the
working fluid and show that the thermodynamic temperature and the ideal gas temperature are the
same.

4.4.2 Ideal Gas as the Carnot Engine Working Substance

Consider an ideal Carnot engine cycle as depicted in Fig. 4.4 with an ideal gas as the working

substance. Let P4, Pp, P and Pp denote the pressures of the gas at the various states represented by

points 4, B, C and D respectively. The isothermal expansion step 4B and isothermal compression step

CD are carried out at constant temperatures 7] and 75 respectively. The net work done by the engine
Whet=Wap+Wgpc+Wep+ Wpy (4.6)

The work done during the reversible adiabatic operations BC and DA are equal to — DU. It follows

from the first law, Eq. (2.4), DU=Q - W, inwhichQ =0
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L
Wee = — AUpe = — J'T‘ Gl 4.7)

T
Wpa = = AUp, = - .‘.‘I Cy dT 4.8)

Equations (4.7) and (4.8) reveal that Wy and Wp, are numerically equal and opposite in sign so
that they cancel each other in Eq. (4.6). Therefore,

Wi = Wag + Wep 4.9)

The change in internal energy in an isothermal process involving ideal gases = 0. Therefore,
W = Q. The work done and the heat absorbed (Q,) during the isothermal expansion AB are given

by

P
Wy =Q =RT;In-A (4.10)
Fy

The work done during the isothermal compression CD is given by

P
Wep = RT; In P—" 4.11)
D

Substituting Eqs. (4.10) and (4.11) into Eq. (4.9), we get

P R
Wier = RT, In ﬁ+RE lnf (4.12)
B D

Equations (4.10) and (4.12) lead to the following equation for the efficiency of the engine:

Woer _ RT,In(Py/Py) + RT, In(F/Py) _ | T,In(F/Py)

- et .
= = 3
0, RT, In(P,/Fy) T, In(P,/Py) (#13)
For the adiabatic processes BC and D4, the temperatures and pressures are interrelated as given
below.
T, P, (y-1y ‘
—m | == for process DA (4.14)
L \B
T| PB (y=1Vy -
—=|— for process BC (4.15)
L, | R
Comparing Egs. (4.14) and (4.15), we see that
Ph_bB
P, - P. (4.16)
Substituting Eq. (4.16) into Eq. (4.13), we get
pe1-B_G=T) .
T] T| (4.17)

By the first law of thermodynamics Wpet= Q| — Q2. Therefore, Eq. (4.17) can be written as

-0, T,-T,
n:—QIQQ‘=——‘T g (4.18)
1 1
a_14
QZ TJ

Comparison of Eq. (4.18) with Eq. (4.5) shows that the ideal gas temperature and the absolute
thermodynamic temperature are identical.
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where Q] 1s the heat absorbed and (7 1s the heat rejected by the system. The heat absorbed by the

system is positive and heat rejected is negative as per the sign convention we have adopted so that the
above equation should be written as

9__9

T, T, (4.20)
or

o . 9

= 4 ==0

T, T (4.21)

Equation (4.21) means that the sum of the quantities Q1/7| and Q2/7? for a reversible heat engine is

zero. Any reversible cyclic operation like the one represented on the P-J" diagram in Fig. 4.6 may be
regarded as made up of a large number of imaginary Carnot cycles and for each such cycle we can
write equation similar to Eq. (4.21) as

g,  do,
=475
T tT (4.22)

where dQ1 and dQ) are the heat absorbed and heat rejected respectively during one such an

imaginary cycle.
dQ,

dQ, dQ,

Volume

Pressure

Fig. 4.6 A reversible cycle divided into a number of Carnot's cycles.

Combining all such equations that are written for the separate Carnot cycles into which the original
reversible cycle is divided, we get

$ e _, (4.23)

T
where the subscript R refers to the reversible process and the cyclic integral limits the equation
to the cyclic operation. We have defined entropy change in a process by Eq. (4.1). Substituting
Eq. (4.1) into Eq. (4.23) we see that

$ dS = (AS)yee = 0 (4.24)

where § is the entropy of the system. We have characterised the thermodynamic property of a system
as a quantity that undergoes no net change in a cyclic operation. Equation (4.24) means that the
entropy change DS for the cyclic operation is equal to zero; or, in short, entropy § as defined by Eq.
(4.1) 1s a thermodynamic property of the system. It reveals an interesting fact: whereas the heat
transferred in a process is a path function, the ratio of the heat transferred to the temperature at
which it is transferred is a state function.
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4.6 CALCULATION OF ENTROPY CHANGES

The entropy change as defined by Eq. (4.1), accompanying a process is applicable for a reversible
process. In practice, processes are never carried out reversibly. Entropy being a state function
depends only on the end states. The entropy change in an irreversible process occurring between any
two states would be the same as the entropy change in a reversible process occurring between them,
the latter being evaluated by Eq. (4.1). Thus, the entropy change in any irreversible process can be
evaluated by devising an imaginary reversible process for accomplishing the same change and
calculating the entropy change in the latter.

If the process involves only the direct transfer of heat or the degradation of higher forms

of energy into heat, the restriction of reversibility in Eq. (4.1) may be ignored. Thus, entropy change
due to the addition of heat can always be calculated by Eq. (4.1), whether the transfer is
accomplished reversibly or irreversibly. Similarly, for processes involving the changes in

the relative position or movements of matter (as in the case of'a falling object) the heat

added, even if the process is highly irreversible, measures the entropy change. However, if a process
is irreversible because of a finite difference in another driving force, such as pressure, calculation of
entropy change is done by devising a reversible process for accomplishing

the change. Thus, we see that in the evaluation of entropy changes, the reversibility restriction is to be
strictly followed only for processes involving changes in the intrinsic state of the

matter.

4.6.1 Phase Change

The entropy change in phase transitions like fusion, vaporisation, or transition from one crystalline
form to another can be evaluated from the values of the latent heat of phase change and the
temperature at which the change is carried out. The phase changes can be treated as changes occurring
reversibly at constant temperature. For example, the entropy of vaporisation DS}7is found out as

AHy,

Agv= T

(4.25)

EXAMPLE 4.6 Calculate the entropy of evaporation of dry saturated steam at 500 kPa.
Data: From the steam tables, latent heat of vaporisation, DH = 2106 kJ/kg; Saturation temperature
of steam = 425 K.

Solution By LEq. (4.25), entropy change accompanying vaporisation is DSp-= 2106/425 = 4,96 kl/kg
K

4.6.2 Processes involving Ideal Gases
For a differential change in the thermodynamic state of a closed system, the first law of
thermodynamics [Eq. (2.5)] can be written as

dQ=dU+dw
When the process is reversible and the work involved is only work of expansion (P d1), the above
equation can be modified as

dQp=dU+ PdV
Since this infinitesimal change in the state of the system can be assumed to occur at constant
temperature 7, the entropy change by Eq. (4.1) is

_dU+Pdv
T

ds (4.26)

For an ideal gas, dU = Cy dT and P = RT/V.

_ GydT + RT @V/IV) _
=ao e

dS +R—

1%
¢, 41, gd
T 4
Assuming that C'j7 is independent of temperature, this equation can be integrated for a finite change
from state 1 to state 2 giving for one mole of an ideal gas,

T, V,
AS=Cyln—=+RIn—=
v T, v 4.27)

where the suffixes 1 and 2 indicate the properties of the gas at state 1 and state 2 respectively.
Equation (4.27) can be used for the evaluation of entropy change accompanying the change in states of
ideal gases. It can be put in another form also. We know that for ideal gases,

Cy=Cp-R (4.28)

and
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TV
ds= w (4.26)

For an ideal gas, dU = Cy dT and P = RT/V.

dv
Vv

_ CydT + RT (dVIV)
- 7F

ds

=C‘,£+R
T

Assuming that Cj7 is independent of temperature, this equation can be integrated for a finite change
from state 1 to state 2 giving for one mole of an ideal gas,

E

AS=Cy lﬂ%-\!—R]n 427
|

where the suffixes 1 and 2 indicate the properties of the gas at state | and state 2 respectively.
Equation (4.27) can be used for the evaluation of entropy change accompanying the change in states of
ideal gases. It can be put in another form also. We know that for ideal gases,

Cy=Cp-R (4.28)
and

h_AL

W & § (4.29)

Substituting Eqs. (4.28) and (4.29) into Eq. (4.27), we obtain the following:

T, P
AS=Cpln—=-RIn-=
P T 2 (4.30)
Referring to Eqs. (4.27) and (4.30), we see that for constant volume process
T
AS=C,In—= 3
v T, (4.31)
For constant pressure process, we have
T,
AS =Cpln 2 (4.32)
T, )

For an isothermal process, we obtain

AS:RIn&:RInﬂ

V, P (4.33)

Though the above equations are derived on the premise that the processes are reversible, they can be
used for irreversible processes occurring between the same terminal conditions as well. This is

because the change in entropy depends only on the end states and not on the history of the system.
EXAMPLE 4.7 Determine the change in entropy when 2 kg of a gas at 277 K is heated at constani
volume to a temperature of 368 K. Take the specific heat at constant volume = 1.42 kl/kg K.
Solution Entropy change accompanying a constant volume process is given by Eq. (4.31). Form =2
kg,
1, 368 )

AS =mCy In ?: = 2.0(1.42) In 2777 = 0.8067 kI/K
EXAMPLE 4.8 Calculate the entropy change when | kmol of an ideal gas at 300 K and 10 bar
expands through a throttle to a pressure of 1 bar, both pressures being maintained constant during the
process by suitable means.
Solution During throttling enthalpy is unchanged. For an ideal gas enthalpy being a function ol

temperature alone, the temperature remains unchanged during the process. Therefore, entropy change
accompanying the process can be computed by Eq. (4.33).

A 10 _
AS = RIn F = 8314 In —I = 19.14 kJ/kmol K

n

EXAMPLE 4.9 What is the change in entropy when 1 kmol of an ideal gas at 335 K and 10 bar is
expanded irreversibly to 300 K and I bar? Cp = 29.3 kJ/kmol K.

Solution The entropy change in this process is given by Eq. (4.30)

.'.3.'3=C,,In£—RIni
I |

300 1
=(293)In ——= - 8314 In — = 1591 kl/kmol K
335 10
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4.6.3 Adiabatic Mixing Process

When two substances at different temperatures are mixed together adiabatically, both will attain an
intermediate temperature, say, 7. The change in entropy of each is calculated as

as=| %:J’: Cp g (4.34)

where 7' denotes its initial temperature. The total entropy change is then obtained by adding the

individual changes. Equation (4.34) can be used for the calculation of change in entropy in processes
like mixing of two fluid streams or quenching of metallic bodies in liquids.

EXAMPLE 4.10 Ten kilograms water at 375 K is mixed adiabatically with 30 kg water at 275 K.
What is the change in entropy? Assume that the specific heat of water is 4.2 ki/kg K and is
independent of temperature.

Solution Let T be the final temperature attained by the system. Then the heat balance gives

10(375 — T) = 30(T - 275)

Solving this, T = 300 K. Let AS; be the change in entropy of the hot water and let AS; be
that of cold water. Then by Eq. (4.34),

AS, = 10x 4.2 lm— 9.37 kKJ/K
1= 10X 42 x In o0 = - 9.

1 300 _
AS; =30 x42x In 275 = 10.96 kJ/K

The total entropy change is
AS = AS, + AS, = 1.59 kI/K

EXAMPLE 4.11 A steel casting at a temperature 725 K and weighing 35 kg is quenched in 150 kg oil
at 275 K. If there are no heat losses, determine the change in entropy. The specific heat (Cp) of steel
is 0.88 kl/kg K and that of oil is 2.5 kl/kg K.
Solution Let T be the final temperature attained by the system. Then the heat balance gives

35(0.88) (725 — T) = 150(2.5) (T - 275)
where T is the final temperature attained by the system. Solving this, we get, T = 309.15 K. Let
AS) be the change in entropy of the casting and let AS; be that of oil. Then,

008 .

ASy =35 x 0.88 X In —-== = -26.25 kI/K
309.15

AS =150 X 2.5 x In == = 43.90 kI/K

The entropy change of the casting and oil together is

—26.25 + 43.90 kI/K = 17.65 kJ/K

4.6.4 Isothermal Mixing of Ideal Gases
Consider a mixture of two or more ideal gases at pressure P and temperature 7. Let the mole fraction
of the components in the mixture be represented byx;. The entropy change resulting from the
irreversible process of mixing of ideal gases in their pure state at temperature T and pressure P to
form the mixture at the same temperature and pressure can be computed by the following equation, the
proof of which is provided in Chapter 7 [see Eq. (7.122)].

DS=-RSx;Inx; (4.35)
Gibbs paradox. When two distinct intermingling ideal gases are mixed, the resulting entropy
change is given by Eq. (4.35). For an equimolar mixture, the entropy change is,

DS=-R(05In05+05In05)=—RIn0.5=R1In2.0

This is true as long as the gases are different, no matter how nearly identical they are. But, when the
gases are the same, the change in entropy on mixing should be zero. This curious result is known as
the Gibb's paradox.

EXAMPLE 4.12 Assuming that air is a mixture of 21% oxygen and 79% nitrogen by volume,
calculate entropy of 1 kmol air relative to pure oxygen and nitrogen, all at the same temperature and
pressure.
Solution According to Eq. (4.35), entropy change accompanying the process of mixing pure oxygen
and nitrogen to form 1 kmol air is

DS=-8.314(0.21 In0.21 +0.79 In 0.79) = 4.27 kJ/kmol K
This value represents entropy of 1 kmol air relative to pure components.
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4.6.5 Chemical Reactions
The entropy changes accompanying chemical reactions are evaluated through the use of absolute
entropies of the various components taking part in the reaction. Let Sp denote the sum of the entropies
of the reactants and Sp denotes that of the products. Then the entropy change accompanying the
reaction is given by

DS=Sp-Sg (4.36)

EXAMPLE 4.13 Calculate the entropy change for the following gas phase reaction occurring at 1 bar
and 298 K.
|
CO + 209 =C0y; DH=-2.8318 O 10° J/mol

The absolute entropies of CO, oxygen and C(» are respectively 198 J/mol K, 205.2 kJ/kmol K anc

213.8 J/kmol K. Can you calculate the entropy change as the ratio of heat of reaction to the

temperature of the reaction? Why?

Solution Refer Eq. (4.36). The reactants are CO and oxygen. The product is CO».
Sp=213.8J/K,Sp=198+0.5 O 205.2=300.6 JK

DS=213.8-300.6=-86.8 /K

Since the reaction is highly irreversible, entropy change cannot be calculated as the ratio of heat of
reaction to the temperature.

AH 2.8318 x 107 n
AS # [ T = 9SO K
T 28
The heat of reaction (—DH) is the heat liberated when the reaction occurred irreversibly. If the
reaction were carried out reversibly, for example, in an electrolytic cell with the generation of
electric energy, the heat liberated would be (- 7DS). Therefore, the difference between these two
represents the heat loss because of the irreversible nature of the process, or the heat that could have

been utilised for the production of useful work like electrical energy. Thus the energy available for
useful work is

2.8318 00 105 -298 (1 86.8 =2.57314 0 105 ]
4.7 CLAUSIUS INEQUALITY

The Carnot principle states that a reversible heat engine is more efficient than an irreversible engine.
The efficiency of a reversible engine is given by Eq. (4.17)
O o

J]':[——":
Y 1

Now consider an irreversible engine operating between the same thermal reservoirs. Let dQ, be
the heat absorbed and d@, be the heat rejected by the engine. The efficiency of the engine is

_dQ - dQ, _, _ dQ,

= =i 4.37
do, 40, Weitl
Then, by Carnot principle,
dQ, T,
-2y S (4.38)
dg, T
which means
_do, & T,
dg, " T,
or
Y I

Adopting the sign convention that the heat rejected dQ, is negative, the preceding relation gives

o , 0
L L

(4.39)

An irreversible cyclic operation can be divided into a number of heat engine cycles involving
infinitesimally small heat interactions, as we have done in Fig. 4.6 for the case of a reversible cyclic
operation. For each such cycle, it is possible to write equations analogous to Eq. (4.39) so that the nei
result would be
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Now consider an irreversible engine operating between the same thermal reservoirs. Let dQ, be
the heat absorbed and dQ, be the heat rejected by the engine. The efficiency of the engine is

=% -d0 |_45 (4.37)
dQ, dQ,
Then, by Carnot principle,
dQ. T
=l R 38
aQ T oy
which means
& 5
dQ, I
or
Q0 _do,
L T

Adopting the sign convention that the heat rejected dQ, is negative, the preceding relation gives

dg, , dg, _
R

An irreversible cyclic operation can be divided into a number of heat engine cycles involving
infinitesimally small heat interactions, as we have done in Fig. 4.6 for the case of a reversible cyclic
operation. For each such cycle, it is possible to write equations analogous to Eq. (4.39) so that the nel
result would be

(4.39)

;ﬁ aQ <0 (4.40)
T

where T is the temperature of the thermal reservoir. Combining Eq. (4.23) for the reversible cyclic
operation with Eq. (4.40) for the irreversible process, we get

Sf’ L <o (4.41)
T

which is known as Clausius inequality. 1t states thatin a cyclic operation, the sum of the dQ/T
terms around a complete cycle is less than or equal to zero depending on whether the process is
irreversible or reversible.

CVARANDTIED A 14 TTataa Madisicie cacacalin. alhaces thas dha alhacas fta cddccces taa 6 cacmanann cn saladad sa
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4.9 ENTROPY AND IRREVERSIBILITY

The total increase in entropy associated with an actual process is a measure of the loss in capacity of
the system and surroundings as a whole to do work In other words, the increase in entropy
accompanying a spontaneous process is a measure of lost work.
Consider an irreversible process in which a quantity of heat O is transferred from a source at a
temperature 7’| to a sink at a lower temperature 7. The change in total entropy in this process is
given by Eq. (4.48).
3 o o LT,
Ay ===+ ==0 l =
A R

Now consider a reversible heat engine operating between the same thermal reservoirs receiving the
same quantity of heat Q. The efficiency of such an engine is given by Eq. (4.17)

The work output of the engine can be calculated as the product of the efficiency and the heat
input.

LT

|

W=0

(4.50)

This is the work which would have resulted had the heat transfer process been reversible, but
which was lost because of the irreversible nature of the process. Equation (4.50) can be modified
as

5,-17,

W=7}Q?' (4.51)
142

Equation (4.51) can be combined with Eq. (4.48) to give
Wiosr = T2(AS) g (4.52)

Equation (4.52) gives a physical meaning to the total entropy change in an irreversible process. The
product of total entropy change and the temperature of the heat sink gives the quantity of heat that is
wasted or degraded in an irreversible process. A reversible engine which receives heat Q| from the
reservoir at temperature 71 would perform some work rejecting a part of it, say 09, to a heat sink at
temperature 79. The heat rejected in the case of an irreversible engine which receives the same
amount of heat would be greater by an amount equal to 79(DS)gta]- Thus
T5(DS)iotal represents heat taken in at a higher temperature that would have been available for doing
work had the process been reversible, but that was lost because of the irreversibility of the actual
process.
Though Eq. (4.52) is developed for a heat transfer process, it can be shown that it is applicable to any
process. We can generalise the equation into the following form

Most = To(DS)otal (4.53)
T() is the temperature of the surroundings. In practice, it is approximately equal to the temperature of
the atmosphere. The lower the value of 7{), the lesser the work loss due to irreversibility of the
process. But, the lowest practicable temperature is that of the atmosphere. To maintain the

temperature of a heat sink below that of the atmosphere, work is needed, and this work would be

more than that is gained by lowering 77).
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411 THIRD LAW OF THERMODYNAMICS

We have seen in the previous section that the more completely a system is shuffled the greater is its
entropy. Entropy is a measure of the randomness of molecular arrangement of a system. An orderly or
unmixed configuration results in low entropy. It is natural therefore, to expect a substance to have
zero entropy when it reaches a state in which all randomness have disappeared. A perfect crystalline
substance at the absolute zero of temperature would meet this requirement and should have zero
entropy. Using the experimental data on the heat capacity of perfect crystalline substances at very low
temperatures their entropy at 0 K was calculated and it was shown that they all have same entropy
values at this temperature. These observations lead to the postulate of the third law of
thermodynamics: The absolute entropy is zero for a perfect crystalline substance at absolute zero
of temperatures.

In comparison with internal energy and enthalpy, which are calculated relative to an arbitrary
reference state, entropy is a reference property and is absolute, as are pressure, volume and
temperature. Third law of thermodynamics can be utilised to calculate the absolute entropy of
substances at a given temperature by assigning the value zero for entropy of the crystalline form of the
substance at absolute zero. This is done by measuring the heat capacity at different temperatures and
the latent heats of phase transition that the substance must have undergone to arrive at the present state
from the initial state of absolute zero of temperature. For example, let the melting point of the
substance be }'Jrand the boiling point be 7p. The entropy at 7, where T is above the boiling point may

be evaluated as

e Ir, CpsdT  AH, *.[R CpdT | AHy *IT CrodT
0

(4.55)
T T! rf T Tb Tb T

where Cpg, Cpy, and Cpg; are the specific heats of solid, liquid and gas respectively, and DHy and
DHy are the latent heats of fusion and vaporisation respectively. The main difficulty in using the

above equation is with regards to the measurement of heat capacity at very low temperatures.
EXAMPLE 4.21 1t is known that the molar heat capacity of a substance at low temperatures can be

approximated by the relation Cp = aT3, where a 1s a constant. Determine the molar entropy of a metal
at 10 K if the molar heat capacity at this temperature is 0.45 J/mol K.

Solution The entropy of the solid at 10 K is evaluated using the first integral in Eq. (4.55)

T _dr v _Sdl 1 _,
S=.LCP?=L ar'=- = <l

At temperature T, Cp = aT?. Therefore,
§ = Cp/3 = 0.45/3 = 0.15 J/mol K
EXAMPLE 4.22 Calculate the absolute entropy of water vapour at 473 K and 101.3 kPa above273
K base temperature. Compare this with the value reported in steam tables (S = 7.829 kJ/kg K). The

average heat capacity of water = 4.2 kl/kg K and that of water vapour between 373 K and 473 K =
1.9 kl/kg K. The latent heat of vaporisation at 373 K = 2257 kl/kg.

Solution Equation (4.55) is reduced to the following form for the present purpose.

Tt dT QHV T dT
S‘Ir, Cp— + o

173 dT 2257 473 dT 373 473
=j 1, j 1.9 — =421n — +6.051 +1.91n —
m YT T 373 T T 273 373

S =7.813 kl/kg K and it compares favourably with the value reported in the steam tables: S = 7.829
kl/kg K.
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